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NONSTATIONARY ISOTHERMAL EVAPORATION OF FLUIDS IN A CYLINDRICAL 

CHAMBER 

Yu. G. Izmailov, E. A. Utkin, and G. P. Vyatkin UDC 532.72;669.015.23 

Numerical models for nonstationary isothermal evaporation of fluids in the cyl- 
indrical chamber of an experimental device are studied. The effect on the evap- 
oration rate of the radii of the source and the output orifice is investigated. 
The relaxation times and the specific mass flux of the vapor are determined. 
The results are compared with analytic solutions for two limiting cases: the 
one-dimensioanl case and an infinite half-space. 

The laws of mass transfer during the evaporation of solutions and melts of various types 
are of interest both industrially and ecologically. The most widely used information is 
on the temperature and concentration dependence of the evaporation rates, equilibrium partial 
pressures, and diffusion coefficients in gases [i, 2]. Much less attention is paid to investi- 
gating the effect of the configuration and geometric parameters of the equipment on the kin- 
etic characteristics of the process. 

Here we study the dependence of evaporation rates (average mass fluxes) on the dimensions 
of the liquid surface and the output orifice of a cylindrical chamber that is widely used 
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in the laboratory. The circular source of liquid to be evaporated is placed in the center 
of the lower base of the cylinder. We examine the case of isothermal evaporation of a liquid, 
whose molecular weight exceeds that of the gas into which it is evaporated. This guarantees 
that the process is controlled by external diffusion without concentration convection inside 
the chamber. Also, the vapor pressure of the liquid is taken to be substantially less than 
the total pressure of the gas phase. These conditions correspond to most industrial processes 
for melts, where there is little heating above the liquidus temperature. These conditions 
also allow the Stefan flow to be neglected and simplify the problem substantially. 

This case corresponds to a boundary problem for the diffusion equation in cylindrical 
coordinates: 

8C = D ( 02C 1 8C O2C ~ 
at" \-~r 2 + - - - - +  ; r Or az~ ) 

C - -  C e for 0 ~ r - ~ R 1 ,  z =  0, 

C = 0 for O~r~R2, z =  H, 

8C 
-- 0 for 

Or 

OC - - .  = 0 for 
OZ 

(r=O, O<z<H, 
It= R~, O<z<H, 

{;-- O, R~<r<R~, 
H, R 2 < r ~ R 3 ,  

(1) 

(2) 
(3) 

(4) 

(5) 

C = 0  for t = 0. ( 6 )  

The a v e r a g e  m a s s  f l u x  ( e v a p o r a t i o n  r a t e )  f r o m  t h e  s u r f a c e  o f  t h e  s o u r c e  i s  d e f i n e d  by  
t h e  e x p r e s s i o n  

CeF, 

2D ~' OC 
< ]5 -- (Ra) 9"jo r ~ z = o d r .  

We introduce scales for dependent and independent variables: r = RaP , 
t = (Ra2/D)T, and reduce the problem (1)-(7) to a dimensionless form: 

OF O2F 1 OF 82F 

8~ 8p z p 8p c]X 2 

F = 1 for 0 ~ p ~ p l , ,  x = 0, 

F 

The expression for the dimensionless 

= 0 for 

OF 
= 0 for 

Op 

OF 
---~ 0 for 

Ox 

F = 

0<p<p0 ,  x =  X, 

p= o, O~x<~X,  
p= ], O ~ x ~ X ,  

I x = O ,  p ~ < p ~ l ,  

I x = X ,  p0<p~<l, 
0 for ~ ~ 0. 

flux is 

(7) 

z = Rex, C = 

(8) 

(9) 

(10) 

(11) 

(12)  

(13)  

where 

0 0 S x~ 0 
<f > _ 2 8F P do, ( 1 4 )  V Ps 

<i> = </>-R,/D- Ce. (15) 

The problem (8)-(14) was solved by the method of variable directions [3] by using a 
grid with forward differences in time and central differences in space. The integral (14) 
is calculated as follows. For an odd number of nodes M 

Os Or~. M 

i~l  

(16) 

where 
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P 3F~,I + 4F~,2 -- F~,3), V~ = ~ x  ( -  " '~ 

The A i are coefficients for Simpson's quadrature formula: A I = A M = Ap/3, A 2 = A 4 = ... = 

4Ap/3, A 3 = A s = ... = 2A0/3. If the number M is even 

TI~ M ~ p (17) 
~j x~o i=1 

where B a = Ap/3, BM_ I = ~p/3 + Ap/2, B M = Ap/2, B 2 = Bu = ... = 4Ap/3, B a = B s = ... = 
2Ap/3. 

The following condition is used as a criterion for reaching the stationary regime 

max ~,h--F~,h ~ E ,  (18) 

where 

Fi,h=/= O, (19) g ~  [f2,h, for n 

II, for F n i,h~ 0. 

Numerical experiments (a rectangular 51 • 51 grid and a time step A~ = 0.01) established 
that as the accuracy is increased (that is, the quantity E is decreased), the value of the 
stationary flux <f> monotonically decreases. Starting with E = 5.10 -~, the concentration 
and flux hardly change; that is, there is no point in increasing the accuracy further. 

Figure 1 shows calculated results for the dimensionless relaxation time ~r and the aver- 
age mass flux <f>. The time for reaching the stationary regime is almost independent of 
the source radius, if its value is comparable with the chamber radius (Ps > 0.6), and increases 
for small radii as the radius of the output orifice is decreased. Evaporation kinetics 
usually are investigated under conditions where the radius of the vessel with the liquid 
is much less than the chamber radius; therefore, this behavior cannot be ignored. It is 
even more important for studying the concentration-dependence of the evaporation rates of 
multicomponent solutions and melts, because the relaxation time depends on the vapor compo- 
sition (it changes the diffusion coefficient in the vapor-gas mixture, which in turn enters 
into the expression for the dimensionless relaxation time ~r). As an example, we present 
values of T r for water and alcohol in a chamber whose dimensions are typical for laboratory 
equipment (H = 8 cm, R 3 = 2 cm). As the radii of the source and the exit orifice are changed 
in the range of 0.2-2.0 cm, the output time for water varies in the range of 258-1853 see, 
and 530-3810 sec for alcohol (at a temperature of 273 K). The required diffusion coeffi- 
cients for water and alcohol vapor are 2.16-i0 -s and 1.05.10 -s m2/sec respectively [4]. 

In the limiting case, where @s = P0 = i, the problem becomes one-dimensional and can 
be solved analytically [5]: 

F (% x) = (1 - -  x/X) -- 2 2 sin (~nx/X) exp [--~ (~nlX)2l, (20)  
~ n  

1 2 ~ ( 2 1 )  < [ > = - - ~  q- --~- ~ .  exp [--~ (~n/X)21. 
n = l  

Calculations showed a maximum difference of 0.024% between these formulas and the numerical 
results for the dimensionless concentrations at T = Tr; the maximum difference was 0.054% 
for the dimensionless flux. 

The dependence of <f> on the radii of the source and the output orifice (Fig. ib) dis- 
plays three different features: a) <f> increases as Ps is decreased for all values of P0; 

b) <f> increases rapidly as the radius P0 of the output orifice is increased (for 9s = const) 
for small values of P0, with very little dependence on P0 for P0 > 0.6; c) the dependence of 
<f> on Ps changes qualitatively for large values of P0: for Ps < 0.2, the derivative dj/dr 
ceases to increase and begins to drop rapidly. 

It is worthwhile to examine this last feature more closely. From Eq. (15) it follows 
that for <f> = const, the dependence of the flux <j> on the source radius is hyperbolic. 
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Fig. i. The relaxation time (a) and the average flux (b) 
as a function of the source radius (X = 4): I) P0 = 0.1; 
2) P0 = 0.2; 3) P0 = 0.6; 4) P0 = 1.0. 

Then for Ps > 0.2, <j> N 1/Ri n, where n > i; that is, in this region, the evaporation rate 
increases even more as the surface radius of the liquid is decreased. This indicates that it 
is impossible to use the average flux(evaporation rate) as a rate characteristic dependent 
only on the nature of the liquid and on thermodynamic parameters, as has been suggested [2, 
6], mainly to study how the volatility of solutioins and melts depends on their composition. 

The cessation of the growth of <f> for small Ps indicates that when the source radius is 
an order of magnitude less than the chamber radius, the position of the chamber walls hardly 
affects the evaporation rate; that is, evaporation occurs under conditions close to those 
for an infinite half space. An analytical solution can also be obtained in this case. Analo- 
gous curves for the problem with stationary temperature distributions and electric fields 
was solved in [7] and [8]. Various methods (using improper discontinuous integrals and ellip- 
tical coordinates) were used to obtain identical expressions for the corresponding temperature 
and potential field characteristics. Differentiating these expressions and then averaging 
them for the desired case (evaporation in a half space from the surface of a circular source) 
yields the expressions 

] ( r ) -  2DCe , ( 2 2 )  

4DCe ( 2 3 )  <]> 

The last formula shows that for a half-space the dimensionless flux <f> is actually 
constant and equal to 4/~. However, the formula (22), which leads to this, gives an infin- 
itely large local flux near the source for r = El, which obviously does not exist in a real 
process and which should lead to increased results for <f>. Earlier experiments on the evap- 
oration of a series of liquids [9, i0] showed that the average mass flux is actually inversely 
proportional to the source radius; for R i ~ R3, the <f> lies in the range of 0.65-0.75, 
which is close to that obtained from the numerical model. Figure 2 shows the radial distri- 
bution of the local fluxes for various values of Ps" For small source radii the local fluxes, 
obtained both numerically and analytically, are practically the same in the central portion 
of the evaporation surface, but the differences grow rapidly away from the center. 

The actual flux distribution evidently is closer to the numerical results, because, as 
the source radius is decreased, the central and peripheral zones of the evaporation surface 
approach each other. These zones are substantially different with respect to the concen- 
tration gradient. This leads to a gradual flattening of the fluxes, which is actually 

0,8 

0,4 

0.2 0,6 U/L) s 

Fig. 2. Radial distribution of the local fluxes 
(X = 4, P0 = i): i) Ps = 0.i; 2) Ps = 0.2; 3) 
Ps = 0 . 4 ;  4 )  Ps = 0 . 6 ;  5 )  Ps = 0 . 8 ;  6 )  Ps = 
1.0; 7) infinite half-space. 
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observed in the evolution of the curves <f(ps)> as the source radius is decreased; that 
is, the evaporation surface approaches a point source to an even greater degree. 

Thus, the model presented for nonstationary isothermal evaporation of a liquid can display 
the characteristic features which are recorded experimentally. It correlates well with 
limiting analytical cases and makes it possible to calculate the concentration fields, mass 
fluxes, and relaxation times. It can also be used to determine the diffusion coefficients 
of liquid vapors in gases with known values of the vapor pressures and measured evaporation 
rates. 

NOTATION 

<j>) average mass flux, kg/(m2"sec); D) diffusion coefficient, m=/sec; C) vapor concen- 
tration in the gas, kg/m3; C e) equilibrium vapor concentration, kg/m3; Rz) source radius, 
m; R 2) radius of the output orifice at a height H, m; R 3) chamber radius, m; H) chamber 
height, m; F) dimensionless concentration; Ps) dimensionless source radius; P0) dimensionless 
orifice radius; X) dimensionless chamber height; <f>) dimensionless mass flux; f) dimen- 
sionless local mass flux. 
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